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ABSTRACT 

The quantum generalization of the Gelfand-Levitan method 

is presented for the nonlinear SchrSdinger model. The basic 

dispersion relation for operator Jost functions is derived, 

and the Heisenberg field operator is expressed in terms of 

scattering data operators. Construction of Green's functions 

in the zero-density vacuum is discussed. The four-point func- 

tion is explicitly calculated from the expression for the field 

operator and compared with the result of a direct Feynman graph 

summation. In addition it is proven for any number of particles 

that the Hamiltonian eigenstates constructed from the quantized 

scattering data are identical with-those previously obtained by 

means of Bethe's ansatz. 

PACS numbers: 03.50.-z and 03.70+k 
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I. INTRODUCTION 

The development of the inverse scattering transform as an 

operator method in quantum field theory has provided a clearer 

understanding of the structure of exactly soluble models. The 

method has been used to formulate operator solutions of the 

quantum nonlinear Schrodinger l-3 and sine-Gordon equations. 4 The 

Bethe ansatz solutions of certain two-dimensional fermion 

theories'may also be classified as indirect applications of 

the quantum inverse method. Comparing these methods with the 

classical inverse technique of Gardner, Greene, Kruskal, and 

Miura, 6 it is apparent that what has been developed in the 

quantum theory thus far represents only a part of the classical 

methodology. In the classical inverse method, one solves the 

initial value problem by first mapping the initial conditions 

into a set of scattering data (the direct problem) and at a 

subsequent time, reconstructing the field configuration from 

the scattering data (the inverse problem). Until now, the 

analysis of the quantum formulation has provided the general- 

ization only of the direct problem. This suffices for the con- 

struction of the eigenstates and eigenvalues of the Hamiltonian. 

In order to discuss the Heisenberg field operator and the cal- 

culation of Green's functions,we%ust consider the quantum 

analog of the inverse problem, which is solved classically by 

the Gelfand-Levitan integral equation. This quantum general- 

ization is the content of the present paper. In Section II 

we derive an operator form of the Gelfand-Levitan 
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equation for the quantum nonlinear Schrodinger equation and 

then, in Section III, discuss some of its consequences. 

Section IV contains a short discussion. 

In the remainder of this Section we collect some results 

from the direct problem analysis, following essentially the 

notation of Ref. 2 . The nonlinear Schrtidinger model (delta- 

function gas) is defined by the normal ordered Hamiltonian 

where the field Q, obeys equal-time commutation relations 

[~GoM*~Y,t)] = 6(X-Y). 

For simplicity, we will consider only the case of repulsive 

coupling (c>O) for which there are no bound states in the 

spectrum. The model is solved by considering the Zakharov- 

Shabat linear eigenvalue problem' 

-. -- 
( a iax- l 9 y2 %G @* Y1 . 

(1) 

(2) 

(W 

(3b) 

The solutions Y of Eq. (3) are normal ordered operator functionals 

of the Heisenberg fields C$ and a*. Particular solutions are 

chosen by specifying the asymptotic behavior in one direction 

i 
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at spatial infinity. Of special interest are the Jest solutions 

$(x,5) and x(x,5) defined by 

$(X,c) _ A eisxi2 i ) as x + -03 , 

x(x,6) - y emicxi2 
0 

as X + +a . 

(da) 

(4b) 

Both $ and x are analytic in the lower half S-plane, where 

analyticity of an operator is taken to be equivalent to ana- 

lyticity of all its matrix elements between physical states. 

We will also have occasion to use the conjugate functions 

(5) 

which for real 5 are also solutions of Eq. (3) and are analytic 

in the upper half plane. The scattering data a(<) and b(E) are 

defined by the asymptotic behavior 

(6) 

The fundamental commutators among the operators a and b may be 

obtained from the following properties (7) through (10) of the 

Jost functions + and x. 
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From the defining relations (3) and (4) one finds that 

the non-vanishing commutators of + and x with the fundamental 

fields C$ at the same point x are given by 

[ 1 ifi x+* = - y-- x* 

[ 1 X,lG ifi = - 2 x1 . 

In addition $ and x commute: 

[ 
~i(x,S) ,Xj (x,S') 1 = O ' 

The results (7) and (8) remain valid with $ replaced by $ 

and/or x replaced by ii. Using (7) one may show that the 

Wronskian of 9 or i$ with x or 2 is constant in x, and hence 

the scattering data may be expressed as 

- 

a = $1 x-2 - $2 x1 
-. -_ : ._ 

(7) 

(8) 

(9) 

Thus a(<) is analytic in the lower half plane. From (9) we 

may also deduce the asymptotic behavior 



-6- FERMILAB-Pub-79/75-THY 

- b*(t)e i(x/2 
x(x,S) - -i<x/2 as x -t -a . 

a(S)e 
(10) 

Using these results it is possible to derive all the commutation 

relations among the Hamiltonian H and the scattering data a(c) 

and b(S). Expressing the results of Ref. 2 in terms of the 

reflection coefficient 

R*(S) = & b(5) a-l(S), (11) 

we have 

bLaW] = 0 , 

[HrR*(E)]= E2 R*(S) , 

[a(5) d(V)] = [ a(5) ,a* W)] = 0 , 

a(E,)R*(E') = (1 - &-i,)R* (S')a(<), 

a*(<)R*(<') = (1 + &+iE)R* (t')a*(C) , 

R* (<)R* (5') = S(c',<)R* (<')R*(E) , 

where S(E,<') is given by 

For 5><' this is the two body S-matrix. The commutation 

relations (12) - (17) have also been derived, in extremely 

elegant fashion, by Sklyanin and Faddeev, 1 who obtain the 

additional result 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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R(E)R*(5’) = S(S,S’)R*(s’)R(S) + 2~r 8(6-C’) . (19) 

That (19) is correct has also been shown in Ref. 8. From 

(12)-(16) it is seen that if we define a state 

I+ l 
.k,> = R*(k+..R*(k,)lO> , (20) 

where IO> is the vacuum state with Q(x)10>=0, then Ikl...kn> 

is a simultaneous eigenstate of H, a(<) and a*(<):- 

Hjkl... -k,' r 

a(<> Ikl...kn> = ~ 1 
i 

- &- .-is 1 
Ikl...kn> , 

a*(S) (kl.. ekn’ = 2 IL Ikl...kn> . 

(21) 

(22) 

(23) 

The particular significance of the operator R*(S) is that if 

kl<k2<...<kn then Ikl. ..kn> is a normalized in-state, while if 

kl>k2...>kn it is a normalized out-state. In Section III it is 

proven that these states are identical with those previously 

obtained by means of Bethels ansatz, 9,lO a result till now 

checked only up to n=3. 
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x 

II. QUANTUM GELFAND-LEVITAN EQUATION 

In this Section we derive the quantum version of the 

Gelfand-Levitan integral equation which relates the field 

$(x) to the reflection coefficient R(S). To begin let us 

review the derivation of Zakharov and Shabat7for the classical 

case. These authors consider the equation $=aji+bx (for < 

real) and use the definition (11) to write it in the form 

w -1 = - X -i& R* x . 

This suggests a piecewise analytic function @ defined by 

i 

%e -icx/2 ImE> 
@(x,6) = . 

$a 
-1 .-iSx/2 ImE< 

From (24) the discontinuity of 0 across the real axis is 

ifi R*x, while as I<[-+~, Cp has the behavior 

@ - (i) + 0 (-$) . 

(24) 

(25) 

(26) 

Thus we may write a dispersion relation for @ which when 

evaluated just above the real axis reads 

03 

?e 
-iCx/2 = 1 

( > 
43 R*(S')X(x,S')e-iS'x'2 

0 + z? I -co dg' c'-c-iE . (27) 

This equation enables the Jost function x(x,<) to be determined 

in terms of the reflection coefficient R(c); the field C$ may 

then be obtained by means of the asymptotic behavior 
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x,(x,S)e 
i<x/2 fi'(x), as ~~~+a3 - - 5 I (28) 

which follows directly from the defining equations (3) and (4). 

The main result of this paper is to demonstrate that (27) 

is maintained in the quantum theory and that the correct order- 

ing is as shown. 8 This is not a trivial extension of the classical 

result since, as we shall see explicitly below, the motivating 

equation (24) is no longer valid in the quantum theory. Let us 
instead, for real 5, define an operator function g by 

s(xr5) = :(x,5) - ifi R*(S)x(x,S) . (29) 

Since the functions g and x on the right satisfy the Zakharov- 

Shabat equation (3) it follows that g satisfies the coupled 

equations 

( 
a 1 is++sl= 1 - fig,+ f 

92 = fi e* g1 -ic R*(S),@*(x) [ 1 x1 . 

(30a) 

(30b) 

The second term in (30b) arises from the quantum orderings. 

Using Eqs. (7), (8), (9) and (ll)- _the commutator [R*(<),@*(x)] 
--1. 

may be evaluated, yielding 

[R*(E) ,@*I = ‘ii, - ifi R*X2)$J2a -1 , (31) 

so that equations (30) become 
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( . a 
5F-T IL c)g2 = fi $* gl- ic g2 q2aW1xl . 

From its definition (29) the function g has the asymptotic 

behavior 

i<x/2 2 
g--e ( 1 0 as x+--m , 

(32a) 

(32b) 

(33) 

where, for real 5, the operator a is defined by 

W) = a*(S) - c R*(S)a*(S)R(S) . (34) 

Classically we could use the unitarity relation la12-lb/2=l 

to conclude that a(S) equals a -551 I as indeed it would be 

if g were $a -1 . To gain some feeling for the quantum case 

let us use the results (16)-(19) to evaluate a(<) on a one- 

particle state 

g(t)lk> = 1 + ,-;FiE - 27r c 6(5-k) 

We see that only to first order in c is this the same as 

a%) Ik>, 
-1 

since the latter is ) Ik>. More 

(35) 

generally we may show 
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g(S) Ikl. ..k,> = ; 
' . 

i=l ' + <-;I-is Ikl...kn> . 

Since the states /kl...kn> are complete, we may regard (36) 

as an alternative definition of a(<) and conclude that it 

is analytic in the lower half S-plane with the property 

a(S) = 1 + O(i) as I<[+w . 

(36) 

(37) 

We now make the crucial observation that both the differ- 

ential equation (32) for g and its asymptotic behavior in (33) 

may be continued into the lower half <-plane without singular- 

ities. Thus the operator function g(x,S) may itself be continued 

into the lower half t-plane, and is analytic there. We are now in a 

position to mimic the classical derivation,defining a function Q, by 

1 

ie -iSx/2 Im c>O 
@(x,S) = 

g e -i<x/2 Im C<O . 

By construction Cp is piecewise analytic with discontinuity 

across the real axis given by ifi R*(<)x(x,<)e -iSx/2 . In 
addition, as [~I+~,Q has the property 

@ - ; + 0 ($), ( > - __ - ., 
which holds in the lower half plane by virtue of (37). Thus 
we may write a dispersion relation for @ which yields the 

desired result 

ze-iSx/2 = 1 M 
( > 

42 
0 +E 

dS, R*(S')X(x,S')e-iS'x'2 
s'-S-ie . -Co 

(38) 

(39) 

(40) 
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Iterating this equation and its hermitian conjugate, and 

using the asymptotic behavior (28), which holds also in the 

quantum theory, we obtain 

Q(x)= ,> R(Sl) e 
iElx 

dS, d5, dS, R*(52)R(SL)R1S3)e 
i(S,-S,+S,)x 

ziTzT2Tr (5,~5, -is) (S,-c,+ie) 

+ . . . . 

All the above results refer to some fixed time, say t=O. 

However from (13) we see that the time dependence of R(c) 

is simple so that (40) and (41) may be generalized to arbi- 

trary times by the replacement 

2 
R(S) -f R(5,t) = eWis t R(S) . 

(41) 

(42) 

Equations (40) and (41) are the fundamental results of 

this paper. However since the above proof is somewhat formal 

it may be useful to provide a simple test of these results. 

Note that equation (40) holds for all values of the spatial 

variable x. In particular it is valid in the asymptotic 

regime x-+-co where it produces only one non-trivial result: 

a(S) = 1 + ic dg' R (S')a(S')R(S') 
<I-c+is l 

(43) 

Since a(<) is diagonal on the n-particle states (20) we can 

verify this equation directly. By acting on the state Ikl...kn> 

it is easily seen using (17),(19) and (22) that (43) is equiva- 

lent to the identity 
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ft l-+&c ( 1 1 - ic rt . 
i-1 i 

(44) 
i=l ( 

1 - ,fC, 
7 i 

i#j )I 

(Here, all denominators are understood to have a negative 

imaginary part.) For n=2 the validity of (44) is seen by 

noting that 

(45) 
and thus the right hand side of (44) reduces to (l- ic /(<-kl)) 

x(1- ic /(<-k2)). Using algebraic manipulations similar to the 

above, the identity (44) may be proven for arbitrary n by 

induction, thus verifying (43). 

III. APPLICATIONS 

In this section we present two applications of Eqs.(41) and 

(42) for the Heisenberg field $(x,t). First we observe that 

together with the commutator (19) these equations may be used to 

compute any 2n-point Green's function 

where T denotes the usual time ordering operation. Since for 

each term in the expansion (41), the annihilation operators R(E) 

appear to the right of the creati-& operators R*(E), it is 

evident that for the 2n-point function above we need consider 

at most the first n terms in the expansion. Thus the evaluation 

of any Green's function is reduced to a finite calculation. The 

two-point function <OlT{$(x,t)$*(O,O)}[O> is easily seen to be 

just the free propagator, so that the first non-trivial appiication 

. . 
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of (41) is for the 4-point function. Denoting by G4(ojkjwiki) 

the Fourier transform 

xidtidxjdt i exp i(witi-wit:-kixifkjxj) 
> 

@ (X-j-t;) 4 (Xiti) $* (Xltl) 4 (X2t2) 1 O> , 

we find, after some computation, that the connected part 

Gz is given by 

G4 = 
4~26(w;+wi-wl-w2),6(ki+ki-kl-k2) -4ic 

C 

i=l 
wi-kf+is)(wj-kj2+is) 1 [ 1 l+ic/o ' 

with 

cl f 2 h1+w2) - (kl+k2) 
2 l/2 1 . 

(46) 

(47) 

(48) 

The result (47) may be compared with a direct Feynman graph 

calculation. Apart from external factors [the first bracket 

in (47)] the tree graph is just -4ic, while the one-loop term 

is given by 

(-4ic) i2 
2 2 I (49) 

(w-k +is)(W1+~2-w-(kl+k2-k) +iE) 

which reduces to -4ic(-it/a). S-GGe this contribution depends 

only on thetotal energy and momentum, and not on any relative 

momentum, we see that the full connected 4-point function, which 

is just a sum of bubbles, is a geometric series which sums to 

give the result (47). As an aside, it is interesting to note 
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how the 4-point function (47) leads on the mass shell, 

w i=kf,ti;=k;2, to the two-body S-matrix (18). Writing the 

scattering operator as S=l+T, and noting that on shell the 

quantity 0 in (48) is just k 12~lkl-q’ we conclude that 

the matrix element of T between asymptotic states is 

= (2V)26(k;+k;-kl-k2) S(kl-ki)+b(kl-ki) l+ic/k12 I-2jc’k121 
2ic = - 

k12+ic <kikilklk2> . 

Thus 

k12 -ic 
<kjkilSlklk2> = k12+ic <kjk;/klk2> , 

(50) 

(51) 

in agreement with (18). 

As our second application of the Heisenberg field expres- 

sion (41), we will prove for any number of particles that the 

states (20) are identical with those obtained previously by 

Bethels ansatz. 9,lO We first introduce the Fourier transform 

R(S) , 

and define states Ixl...xn> by 

1x1... xn> = R*(xl)...R*(xn)/O> . 

(52) 

(53) 
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Then if x>xi for i=1,2... n we find using (41) that 

4*(x) 1x1.. .xn> = R*(x) Ixl...xn> , (54) 

i.e. only the first term in (41) survives; the contribution 

of the remaining terms may be shown to vanish by simple contour 

integration. Applying (54) repeatedly we conclude that if 

x1>x2>...>xn then 

o* (x1) 4* lx,) l - .&*(xn)jO' = R*(xl)R*(x2)...R*(xn)~O> . (55) 

That this result follows from identifying the Bethe ansatz states 

with those in (20) has already been noted in Ref. 8 . Here we 

will show the converse- that (55) actually implies this identi- 

fication. To see this let us consider the coordinate space wave 

function 

f(kifxi) = <OI$(xl)$(x2)*..~(Xn)Ikl...kn> . (56) 

Since this is symmetric in xl..." 
n it is sufficient to consider 

it in the region x <x 12 <...<x n' In this region we have from (55) 

f(kixi) = <O~R(xl)R(x2)...R(xn)~kl...kn~ 

Using the commutator (19) to evaluate the matrix element we 

recover the usual Bethe ansatz expression for the wave function. 
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We have shown that in the nonlinear SchrGdinger equation, 

the operator transformation which expresses a(<) and b(c) in 

terms of the field operators 4(x) and Q*(x) may be inverted by 

a generalization of the Gelfand-Levitan method. The derivation 

of the basic integral equation in Section II employed an analyt- 

icity argument similar to the classical treatment of Zakharov 

and Shabat, although the problem of operator ordering led to 

some essential differences in the quantum analysis. Using the 

Gelfand-Levitan equation (41), the field operators are expressed 

in terms of the reflection operator R(S) which has a simple time 

dependence. This is a central result of the present analysis. 

To gain experience with this formalism we carried out a number 

of calculations, some of which are reported in Section III. By 

considering vacuum expectation values and few-body matrix elements 

of fields, exact calculations may be carried out by keeping only 

the first few terms of the series expansion (41). The detailed 

combinatorics of these calculations is very reminiscent of the 

graphical formalism which was developed for this model by study- 

ing Feynman graphs. 10 All of these results should be appended 

with the remark that in this model, the vacuum state is structure- 
_- - 

less from the point of view of Bethe's ansatz, i.e. it is the 

reference state upon which the Bethe eigenstates are built. A 

more meaningful application of the methods we have developed 

here is provided by considering correlation functions in a finite 

density gas. This problem is more closely analogous to the 
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calculation of Green's functions in a relativistic theory, 

where the physical vacuum is a complicated many-body state. 

By such considerations, one might also hope to establish a 

connection wit,h the work of Vaidya and Tracy 11 and Jimbo, 

Miwa, Mdri and Sato, 12 who have obtained exact results for 

the correlation functions in the case of infinitely repulsive 

coupling (c=a). These questions are presently being investi- 

gated and will be discussed in a subsequent paper. 

We would like to thank L.D. Faddeev for helpful discussiol .s. 

A-- 

:-, 
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